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Abstract. The paper introduces a new approach to analyze the stability of neural network models
without using any Lyapunov function. With the new approach, we investigate the stability properties
of the general gradient-based neural network model for optimization problems. Our discussion in-
cludes both isolated equilibrium points and connected equilibrium sets which could be unbounded.
For a general optimization problem, if the objective function is bounded below and its gradient is
Lipschitz continuous, we prove that (a) any trajectory of the gradient-based neural network converges
to an equilibrium point, and (b) the Lyapunov stability is equivalent to the asymptotical stability in the
gradient-based neural networks. For a convex optimization problem, under the same assumptions, we
show that any trajectory of gradient-based neural networks will converge to an asymptotically stable
equilibrium point of the neural networks. For a general nonlinear objective function, we propose a
refined gradient-based neural network, whose trajectory with any arbitrary initial point will converge
to an equilibrium point, which satisfies the second order necessary optimality conditions for optim-
ization problems. Promising simulation results of a refined gradient-based neural network on some
problems are also reported.

Key words: Gradient-based neural network, Equilibrium point, Equilibrium set, Asymptotic stabil-
ity, Exponential stability

1. Introduction

Optimization problems arise in almost every field of engineering, business and
management sciences. In many engineering and scientific applications, the real-
time solutions of optimization problems are demanded. However, traditional al-
gorithms for digital computers may not be able to provide the solutions on-line.
Therefore, the search for real-time on-line solutions in such cases becomes not
only important but also essential. In 1980’s, an attractive and very promising ap-
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proach was introduced to provide real-time solutions for optimization problems.
The new approach is termed artificial neural network (ANN). Hopfield and Tank
[12, 13, 28] initiated the recent study of neural networks in optimization. Gener-
ally speaking, ANN provides an alternative and attractive way for the solution of
optimization problems. The significant and unique feature of ANN to optimization
is the realization of simple and real-time hardware (or circuit) implementation. In
other words, an electrical circuit can be constructed which generates the on-line
solution of certain optimization problems.

The seminal work of Hopfield and Tank has inspired many researches to in-
vestigate various neural networks for solving linear and nonlinear programming
problems. Numerous optimization neural networks have been developed, see [1–
3, 5, 14–22, 24, 27, 30, 31, 33, 34]. From the optimization point of view, most
of the existing ANN models for optimization problems could be divided into two
classes. One class is the gradient-based neural network models, which are used for
the unconstrained optimization problems. These problems normally come from a)
some kind of transformations from the constrained minimization problems with
penalty function methods [2, 15, 20, 22, 24]; and b) the complementarity problems
with the NCP functions [17, 18]. The other class is the projective gradient based
neural network models, which are derived from constrained minimization problems
and complementarity problems with KKT-conditions [14, 19, 30, 31, 34]. [30, 31]
present some neural networks for solving linear, quadratic and nonlinear convex
programming problems, which are based on KKT system for optimization prob-
lems. Their models correspond to some variants of the projective gradient method
for the complementarity problem and the variational inequality problem [7–11, 23].
It should be noted that for Lagrangian conditions with the nonnegative Lagrange
multiplier, if the Lagrange multiplier is penalized or transformed into unrestricted
case, the resulting neural network model belongs to the first class. On the other
hand, if the nonnegative Lagrange multiplier is enforced by projection, it belongs
to the second class.

In this paper, we pay our attention to the following unconstrained nonconvex
optimization problem

minE(x), x ∈ Rn (1)

with the general gradient-based motion equation, that is

dx(t)

dt
= −Hg(x(t)), x(t0) = x0 ∈ Rn, (2)

whereE(x) : Rn → R is the objective function or called the energy function,
g(x) : Rn → Rn is the gradient ofE(x), x0 ∈ Rn is an arbitrary initial point
andH is a constant symmetric positive definite matrix which can be viewed as a
scaling matrix. For the case thatH is a function ofx(t), various neural network
models could be established. But in this paper, we only focus on the case thatH

is a constant positive definite matrix, and assume thatE(x) is smooth, i.e.,E(x) ∈
C2(Rn).
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Generally speaking, a neural network model consists of (a) an energy function,
(b) a motion equation which is stable, and (c) the fact that the energy function
should be monotonically nonincreasing along the solution of the motion equation.
For simplicity, in the rest of the paper, we will call (2) as the general gradient-based
neural network. The verification of (b) and (c) for the general gradient-based neural
network (2) will be conducted later.

The stability analysis is a key issue in designing a neural network. However,
the existing discussions on stability [1, 2, 15, 20, 21, 30, 34] are based on the Lya-
punov’s direct method which requires the existence of a Lyapunov function. Un-
fortunately, a Lyapunov function may not always exist, especially for constrained
problems. This certainly limits the stability analysis for a general neural network
model. In this paper, we introduce a new approach to address the stability issues of
a general neural network model. The detailed discussion is given in Section 2. But
first, let us review some of the classical results.

For the ordinary differential equation

dx(t)

dt
= f (x), (3)

we first state some classical results on the existence and uniqueness of the solution,
and some stability definitions for the dynamic system (3) in [25, 29, 32].

THEOREM 1. [32] Assume thatf is a continuous function fromRn to Rn. Then
for arbitrary t0 > 0 and x0 ∈ Rn there exists a local solutionx(t) satisfying
x(t0) = x0, t ∈ [t0, τ ) to (3) for someτ > t0. If furthermoref is locally Lipschitz
continuous atx0 then the solution is unique, and iff is Lipschitz continuous inRn

thenτ can be extended to∞.

DEFINITION 1 (Equilibrium point). A pointx∗ ∈ Rn is called an equilibrium
point of (3) if f (x∗) = 0.

DEFINITION 2 (Stability in the sense of Lyapunov). Letx(t) be the solution of
(3). An isolated equilibrium pointx∗ is Lyapunov stable if for anyx0 = x(t0)

and any scalarε > 0 there exists aδ > 0 such that if‖x(t0) − x∗‖ < δ then
‖x(t)− x∗‖ < ε for t > t0.

DEFINITION 3 (Asymptotic stability). An isolated equilibrium pointx∗ is said to
be asymptotically stable if in addition to being a Lyapunov stable it has the property
thatx(t)→ x∗ ast →∞, if ‖x(t0)− x∗‖ < δ.
DEFINITION 4 (Exponential stability). An isolated equilibrium pointx∗ is expo-
nentially stable for (3) if there existω < 0, κ > 0, δ > 0 such that any arbitrary
solutionx(t) of (3), with the initial conditionx(t0) = x0, ‖x(t0) − x∗‖ < δ, is
defined on[0,∞) and satisfies

‖x(t) − x∗‖ 6 κeωt‖x(t0)− x∗‖, t > t0.
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Note that above classical stabilities are only for isolated equilibrium points.
Non-isolated equilibrium points could occur inevitably in the dynamic system for
optimization problems. For example, ifE(x) = (x2

1 + x2
2 − 1)2, the points on

the circlex2
1 + x2

2 = 1 are all the equilibrium points of (2). So it is necessary to
extend the definitions of various stabilities from the isolated equilibrium points to
non-isolated ones.

DEFINITION 5 (Connected equilibrium set). The subset0 of the equilibrium set
S = {x ∈ Rn : f (x) = 0} of the dynamic system (3) is called a connected
equilibrium set ofS, if for any x1, x2 ∈ 0 there exists a continuous curve in0
connectingx1 andx2, and if there exists a positive numberτ such that there is no
other equilibrium point of (3) except0 itself in the open neighborhoodB(τ, 0) =
{x ∈ Rn : d(x, 0) < τ } of 0, whered(x, 0) = infy∈0 ‖x−y‖ denotes the distance
from x to0.

DEFINITION 6 (Stability for connected equilibrium set). Letx(t) be the solution
of (3). The connected equilibrium set0 is stable if for anyx0 = x(t0) and any
scalarε > 0 there exists aδ > 0 such that ifd(x(t0), 0) < δ thend(x(t), 0) < ε

for t > t0.

DEFINITION 7 (Asymptotic stability for connected equilibrium set). The connec-
ted equilibrium set0 is said to be asymptotically stable if in addition to being stable
it has the property thatd(x(t), 0)→ 0 ast →∞, if d(x(t0), 0) < δ.

DEFINITION 8 (Exponential stability for connected equilibrium set). The connec-
ted equilibrium set0 is exponentially stable for (3) if there existω < 0, κ > 0, δ >
0 such that any arbitrary solutionx(t) of (3), with the initial conditionx(t0) = x0,
d(x(t0), 0) < δ, is defined on[0,∞) and satisfies

d(x(t), 0) 6 κeωtd(x(t0), 0), t > t0.

Note that there is a simple fact that the objective functionE(x) in (1) remains
constant on the connected equilibrium set0 of the system (2) sinceg(x) = 0 on0
and0 is connected.

The following Theorem 2 provides some interesting properties for autonomous
system (3).

THEOREM 2 [25]. (a) If x(t), r1 6 t 6 r2 is a solution of (3), then for any real
constantc the functionx1(t) = x(t + c) is also a solution of (3). (b) Through any
point passes at most one trajectory.

Throughout this paper, we assume that the objective functionE(x) in (1) is
bounded below and continuously differentiable. In addition, its gradient function
g(x) is Lipschitz continuous inRn, i.e. there exists a constantL (> 0) such that

‖g(x1)− g(x2)‖ 6 L‖x1 − x2‖ for anyx1, x2 ∈ Rn. (4)
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Our study in this paper is mainly on the various stability properties of the
gradient-based neural network (2) for the optimization problem (1). Our contri-
butions consist of the following five parts.

• First, we introduce a new approach to study the stability issues for various
motion equations.

• Second, under some mild assumptions, we prove that any trajectory of the
gradient-based neural network (2) converges to an equilibrium point of (2) as
t →∞.

• Third, we show that the Lyapunov stability is equivalent to the asymptotic
stability in the gradient-based neural networks (2) for (1).

• As a direct corollary, for the convex objective function, we obtain that any
trajectory of the gradient-based neural network (2) converges to an asymptot-
ically stable equilibrium point under some mild conditions. These conditions
are much weaker than those in Lyapunov’s direct method or in the invariant
set method [26, Chapter 3].

• Finally, for the general nonlinear objective function, we propose a refined
gradient-based neural network, whose trajectory with any arbitrary initial point
will converge to an equilibrium point, which satisfies the second order neces-
sary optimality conditions for optimization problems.

The rest of the paper is organized as follows. In Section 2, detailed discussions
on stability issues of the gradient-based neural network (2) for the optimization
problem (1) are provided. A refined neural network model for the general optim-
ization problem is provided in Section 3. Some stability issues are also addressed
in this section. Section 4 is devoted to the simulation of the refined neural net-
work on some problems. Promising simulation results are reported. Finally, some
concluding remarks are drawn in Section 5.

2. Analysis for Gradient-Based Neural Networks

The analysis in this section is forH = I in (2) for simplicity. For the case where
H is symmetric positive definite matrix other than the identical matrix, the analysis
is similar with the norm‖x‖H−1 = xT H−1x and the induced distanced(x, y) =
‖x − y‖H−1 for anyx, y ∈ Rn.

In the literature [1, 2, 15, 20, 21, 30, 34], the stability analysis for a motion
equation is proved by Lyapunov’s direct method which requires the existence of a
Lyapunov function. But unfortunately, a Lyapunov function may not exist in gen-
eral. To overcome this difficulty, we introduce a new approach to address stability
issues of a motion equation without using any Lyapunov function. In addition, the
approach does not require the prior information of the equilibrium point or set at
all. The new approach only pays the attention to the energy functionE(x) and the
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motion equation. In the rest of this section, we will illustrate how this approach
works for the general gradient-based neural network model (1)–(2).

To obtain our main results Theorem 4–Theorem 7, we need the following pre-
liminaries.

THEOREM 3. Let g(x) in (2) be Lipschitz continuous inRn andg(x) 6≡ 0, then
there is no periodic solution for the neural network system (2).

Proof.From Theorem 1 there exists a unique solutionx(t) satisfyingx(t0) = x0,
t ∈ [t0,∞). Suppose that there is a periodic solutionx(t) and the minimal period
is T > 0, that is,

x(t) = x(t + T ), ∀ t ∈ [t0,∞).
Sinceg(x) 6≡ 0, there exists at1 ∈ [0,∞) such thatx(t1) = x1, g(x1) 6= 0, then
x(t1 + T ) = x1. SinceE(x(t)) is nondecreasing on[t1, t1 + T ] from dE(x(t))

dt
=

−g(x)T g(x) 6 0, t ∈ [t1, t1 + T ], soE(x(t)) must be constant on[t1, t1 + T ],
which is a contradiction sincedE(x(t))

dt
|t=t1 = −g(x1)

T g(x1) < 0. 2
From Theorem 2 and Theorem 3, we can conclude that the phase space of (2)

can only consist of equilibrium points and nonintersecting trajectories. Moreover,
every trajectory approaches to an equilibrium point, which is shown later (Theorem
4) without any assumption on the boundedness of level sets of the objective func-
tion. We extendRn to include infinite point as an ordinary point, whose meaning
is that for everyd 6= 0 ∈ Rn, x0 + αd approaches to it asα→∞.

It is easy to see that there is a simple and important fact that every trajectory
of the system (2) is orthogonal to contour curves of the objective functionE(x) in
(1) if they intersect, becauseE(x) is continuously differentiable andE(x) remains
constant on any contour.

LEMMA 1. Let x(t) be a trajectory of the system (2),5 is any contour ofE(x)
in (1), thenx(t) is orthogonal to5 at their intersecting points.

Proof. First, let us denote the phase plane of (2) asx(t, s), wheres represents
the parameter along any contour ofE(x) in the phase plane of (2). SinceE(x) ∈
C2(Rn), from Theorem 7.2 of [6, p. 25], we know thatx(t, s) has continuous partial
derivative with respect tos. Then sinceE(x(t, s)) remains constant on its contour,
i.e.

E(x(t, s)) = constant ∀s,
we have

(∇xE)T · dx
ds
= 0 ⇐⇒

(
dx

dt

)T
· dx
ds
= 0.

This proves the lemma. 2
In the proof of Theorem 4, we also need the following Barbalat lemma.
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LEMMA 2 (Barbalat). [26] If a differentiable functionf (t) has a finite limit as
t →∞, and df (t)

dt
is uniformly continuous, thendf (t)

dt
→ 0 ast →∞.

THEOREM 4. If E(x) is bounded below and its gradientg(x) is Lipschitz con-
tinuous inRn, then for any initial pointx0, the trajectoryx(t) of the system (2),
satisfyingx(t0) = x0, will converge to an equilibrium point of the neural network
(2) ast →∞.

Proof. SinceE(x) is bounded below and monotonically nonincreasing along
the trajectoryx(t), it is easy to see that there exists a finiteE∗ ∈ R such that
lim t→∞E(x(t)) = E∗. Then we have that

E(x0)− E∗ =
∫ ∞
t0

‖g(x(t))‖2dt, (5)

so there exists at least a sequence{ti}, satisfyingti < ti+1 and limi→∞ ti = ∞,
such that

lim
i→∞
‖g(x(ti))‖2 = 0. (6)

In the following, we show that‖g(x(t))‖ is bounded in[t0,∞) by contradiction.
Assume that there is a sequence{si}, satisfyingsi < si+1 and limi→∞ si = ∞, such
that

‖g(x(si ))‖ > i2 i = 1,2, · · · . (7)

By extracting two subsequences if necessary from{ti} and {si}, respectively, we
can assume thatsi ∈ [ti , ti+1], i = 1,2, · · · . Without loss of generality, we assume
that

‖g(x(si ))‖ = max
t∈[ti ,ti+1]

‖g(x(t))‖. (8)

From (6), forε0 = 0.1, there exists aK1 such that∀ i > K1,

‖g(x(ti ))‖ < ε0.

From (8) and the continuity ofg(x), for eachi > K1 there exists aµi ∈ (ti , si)
such that

‖g(x(µi))‖ = ε0 and ‖g(x(t))‖ > ε0 ∀t ∈ (µi, si). (9)

This together with (5) implysi − µi → 0 ast →∞. Then there exists aK2 such
that∀ i > K2,

L(si − µi) 6 0.1, (10)
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whereL is the Lipschitz constant defined in (4). From the continuity ofg(x), (8)
and (10), we have that fori > max{K1,K2}
‖g(x(si ))‖ − 0.16 ‖g(x(si))− g(x(µi))‖

6 L‖x(si)− x(µi)‖
(11)

6 L‖g(x(si))‖(si − µi)
6 0.1‖g(x(si ))‖.

This is a contradiction to (7). Therefore‖g(x(t))‖ is bounded in[t0,∞}, that is,
there exists anL1 such that

‖g(x(t))‖ 6 L1 t ∈ [t0,∞). (12)

It follows from (2), (4) and (12) that for anyt1, t2 ∈ [t0,∞)∣∣∣∣dE(x(t1))dt
− dE(x(t2))

dt

∣∣∣∣ = |‖g(x(t1))‖2− ‖g(x(t2))‖2|
6 ‖g(x(t1))+ g(x(t2))‖ · ‖g(x(t1))− g(x(t2))‖
6 2L1L‖x(t1)− x(t2)‖
6 2L2

1L|t1− t2|,
(13)

so dE(x(t))

dt
is uniformly continuous in[t0,∞). From Lemma 2, we have

lim
t→∞ g(x(t)) = 0. (14)

Next, we will prove that limt→∞ x(t) exists for any initial conditionx(t0) = x0,
wherex(t) is the solution of the system (2). Furthermore, the limit point, sayx∗, is
an equilibrium point of the neural network (2).

First, we define

0 = {x∗ : ∃ {ti}, such thatx(t0) = x0 and lim
i→∞ x(ti ) = x

∗}

as the limit set of the trajectoryx(t) with x(t0) = x0, where{ti} is a sequence
satisfyingti < ti+1, i = 1,2, · · · andti →∞ asi →∞. Now we prove that0 is
a connected set by contradiction. Assume that0 is not connected, then there exist
two sets01, 02, and two open sets�1,�2 such that01, 02 ⊂ 0, 01 ∪ 02 = 0,
01 ∩ 02 = ∅,�1 ∩ �2 = ∅, and01 ⊂ �1, 02 ⊂ �2. We can also assume that at
least one of the sets01, 02 is bounded otherwise01 and02 are connected at infinite
point. Suppose01 and�1 are bounded. Therefore, there exists a bounded closed
setD such that�1 ⊂ D. Considering two pointsxt ∈ 01 andxs ∈ 02, there are
two sequences{ti} and{si} with ti < si < ti+1, i = 1,2, · · · , limi→∞ ti = ∞ and
limi→∞ si = ∞ such that

lim
i→∞

x(ti) = xt , lim
i→∞

x(si ) = xs.
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As a result, there exist anε > 0,Bε(xt ) ⊂ �1, Bε(xs) ⊂ �2, whereBε(x) is a ball
centered atx with radiusε, and aK such that∀ i > K,

x(ti ) ∈ Bε(xt ), x(si) ∈ Bε(xs).
From the continuity ofx(t), for eachi > K, there exists aµi ∈ (ti , si) such
that x(µi) /∈ �1, x(µi) /∈ �2 andx(µi) ∈ D. Then the closeness and bounded-
ness ofD imply that there exists a convergent subsequence{x(uik )} such that
limk→∞ x(uik ) = xµ. Since�1 and�2 are both open sets, thenxµ /∈ �1 and
xµ /∈ �2, soxµ /∈ 0, which is a contradiction to the definition of0. Therefore,0
must be a connected set.

From the discussion at the beginning of the proof and the definition of0, it is
easy to see that the value ofE(x(t)) is the constantE∗ on0, that is,0 is a contour
of E(x(t)). The trajectoryx(t) of the neural network (2) is orthogonal to0 at the
limit point (that is, every point on0) from Lemma 1. On the other hand, since0 is
the limit set ofx(t), the trajectoryx(t)must converge to0. This could be true only
if 0 is a single point set. That is,x(t) converges to a limit point, sayx∗, ast →∞.
And moreover (14) impliesg(x∗) = 0. 2

The result in Theorem 4 confirms that the energy functionE(x) in (1) and the
motion equation, Equation (2) constitute a neural network model. The result in
Theorem 4 also shows that any trajectory of the neural network (2) for the optim-
ization problem (1) will converge to an equilibrium point of the neural network
(2), regardless of the boundedness of level sets of the objective function and the
isolation of the equilibrium point.

Because ofdE(x(t))
dt
= −‖g(x(t))‖2, the energy functionE(x(t)) in (1) is mono-

tonically nonincreasing int if x0 is not an equilibrium point. This fact reveals that
the energy functionE(x(t)) does not preserve following the trajectory of the neural
network system (2). Theorem 3 and Theorem 4 lead to the following surprising
results.

THEOREM 5. Assume thatE(x) in (1) is bounded below and its gradientg(x)
is Lipschitz continuous inRn. Let0 be a connected equilibrium set of the neural
network (2), if0 is stable, then it is asymptotically stable.

Proof. From Definition 5, if0 is a connected equilibrium set of the neural
network (2), there exists a positive numberτ such that there is no other equilibrium
point of (3) except0 itself in any open neighborhoodB(τ, 0) = {x ∈ Rn :
d(x, 0) < τ } of 0. Since0 is stable, from Definition 6, ifx0 is in some small
neighborhood of0, then the trajectoryx(t) satisfyingx(0) = x0 will stay in some
neighborhood of0 for any t > 0. From Theorem 4,x(t) will approach to an
equilibrium point of neural network (2), sox(t) must approach to a pointx∗ ∈ 0
ast →∞, that is,0 is asymptotically stable from Definition 7. 2

The result in Theorem 5 would ease many redundant discussions in proving
both the stability and asymptotic stability in many neural networks for optimization
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problems. The asymptotic stability is particularly important for the neural network
(2) of optimization problem (1), because only the point(s) in the asymptotically
stable connected equilibrium set are the local optimal solution(s) of the problem
(1). The following Theorem 6 shows the equivalence of the asymptotically stable
connected equilibrium set of neural network (2) and the local optimal solution set
of the problem (1).

THEOREM 6. Assume thatE(x) in (1) is bounded below and its gradientg(x)
is Lipschitz continuous inRn. Let0 be a connected equilibrium set of the neural
network (2). Then0 is asymptotically stable if and only if each point of the set is a
local optimal solution of the optimization problem (1).

Proof. From Definition 7, the connected equilibrium set0 is asymptotically
stable if and only if any trajectory in all very small neighborhood of0 will converge
to 0. The objective functionE(x(t)) in (1) is nonincreasing along any trajectory
of the neural network (2) as indicated in the proof of Theorem 3. In addition,E(x)

remains constant on0. So the conclusion is true. 2
The following two examples illustrate the above results.

EXAMPLE 1.

minE1(x, y) = 1

2
(x + y − 1)2. (15)

The level sets ofE1(x, y) are all unbounded unless it is empty, the neural network
for (15) is

dx

dt
= −(x + y − 1),

dy

dt
= −(x + y − 1).

(16)

The equilibrium set of (16) is the linel1 : x + y − 1 = 0, which is connected and
unbounded. The solutions to (16) are

x = 1

2
(1+ x0− y0)+ x0+ y0− 1

2
e−2t ,

y = 1

2
(1− x0+ y0)+ x0+ y0− 1

2
e−2t .

The trajectories are lines

l2 : y − x = y0 − x0.

It is obvious to see that every trajectory approaches to the equilibrium point(1
2(1+

x0 − y0),
1
2(1− x0 + y0)) ast →∞, which is on the linel1, every trajectoryl2 is

orthogonal to the linel1, andE1(x, y) = 0 on the linel1.
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EXAMPLE 2.

minE2(x) = x2e−x. (17)

The neural network for (17) is

dx(t)

dt
= −xe−x(2− x). (18)

The equilibrium set of (18) is{0,2,∞}, and

if x0 > 2, x(t)→∞, t →∞,
if x0 < 2, x(t)→ 0, t →∞,
if x0 = 2, x(t) = 2, ∀ t.

Theorem 4 and the above examples indicate that the infinite point can be viewed
as an extended ordinary point. If the point is an isolated minimizer of the objective
function as in Example 2, some trajectory will approach to it. If the point is not an
isolated minimizer as in Example 1, there is no trajectory with a finite initial point
can approach to it.

In fact, if the setRn is relaxed by level sets{x : E(x) 6 E(x0)} for all
x0’s, Theorem 1 and Theorem 4 still hold. For instance, in Example 2,g(x) is
not Lipschitz continuous inRn, but Lipschitz continuous in any level set ofE(x),
so the conclusions still hold as shown above.

At the end of this section, we provide some results for the convex optimization
problem as the direct corollary of the above discussion. Some similar results have
been discussed in previous works of the neural networks for convex optimization
problems.

THEOREM 7. (a) IfE(x) is convex, then the equilibrium set of the neural network
(2) is connected and asymptotically stable.

(b) If the convex objective functionE(x) is bounded below and continuously
differentiable with Lipschitz continuous gradient, then every trajectoryx(t) will
converge to an asymptotically stable equilibrium point of the neural network (2).

(c) If E(x) is uniformly convex, then every trajectory of (2) will converge to an
equilibrium point globally and exponentially.

Note that there is no any assumption on the boundedness of level sets ofE(x) or
the isolation of the equilibrium point in Theorem 7. These assumptions are always
required in previous works of neural networks for convex optimization problems.

3. A Refined Neural Network

For the general nonlinear objective function, some results for convex optimization
problems as mentioned in Theorem 7 may not hold. However, motivated by the
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Figure 1. The block diagram of the refined neural network model.

work of [4] where eigenvalues and eigenvectors of a matrix can be computed by
neural networks, we propose a refined gradient-based neural network model for the
optimization problem (1) in this section.

The essence of the refined neural network model is the following. First, by
using the gradient-based neural network (2), the trajectory of the neural network
will converge to an equilibrium point of the neural network. Second, by using the
neural network of [4], the minimum eigenvalue, sayλ, of the Hessian matrix at the
equilibrium point can be computed. Ifλ > 0, the model will output the current
equilibrium point and stop the simulation. The obtained point satisfies the second
order necessary optimality conditions for the optimization problem (1). Otherwise
λ < 0, the trajectory is perturbed along the eigenvector corresponding toλ. With
the new initial point, the gradient-based neural network is implemented once again.
The process in the second part may be repeated a few times until an equilibrium
point with positive semi-definite Hessian is reached. In the whole process, the
reduction of the energy functionE(x) is guaranteed. Summarizing the above dis-
cussions, we provide a refined neural network model for the optimization problem
(1) as follows.

A refined neural network model:
Step 0. Given an initial pointx0, a very small positive number̄λ, and a small

positive numberδ.
Step 1. Implement the neural network (2) with the initial pointx0 to reach an

equilibrium point, sayx∗.
Step 2. Use the neural network in [4] to compute the minimum eigenvalueλ and

its corresponding eigenvectorvλ of the Hessian matrixH ∗ of E(x) at x∗.
If λ > −λ̄, stop. Otherwise, setx0 = x∗ + δvλ and go to Step 1.

A block diagram of the refined neural network is shown in Figure 1, whereH =
µI andµ (> 0) is a scaling parameter. The MOS switch (see Appendix B, [5]) used
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Figure 2. Computation ofS in the MOS switch of Figure 1.

in Figure 1 is shown in Figure 2, whereε is used to control the stopping of Step 1,
for details, see Section 4. The output of Figure 2,S, equals 1 if‖∇xE(x(t))‖ 6 ε,
equals zero otherwise.

From Theorem 4, the refined neural network is convergent, which is summar-
ized in the following theorem.

THEOREM 8. If E(x) is bounded below and its gradientg(x) is Lipschitz con-
tinuous inRn, then for any initial pointx0, the trajectoryx(t) of the refined neural
network, satisfyingx(t0) = x0, will converge to an equilibrium point of the neural
network ast → ∞. In addition, the equilibrium point satisfies the second order
necessary optimality conditions for the optimization problem.

4. Simulation

In this section, the refined neural network in Section 3 is simulated on two prob-
lems. Our simulations are conducted with Matlab version 5.2. The numerical or-
dinary differential equation solver used in all simulations is ode23s. The matrix
H in (2) is set toµI , and the scaling parameterµ is fixed atµ = 1000 in all
simulations. The stopping criterion is

‖∇E(x(t))‖ 6 ε = 10−6. (19)

We usetf to denote the final time when (19) is satisfied. In Step 2 of the refined
neural network, we choosēλ = 10−8 andδ = 0.1.

PROBLEM 1.

min E(x) = (x3
1 − 3x1)

2+ x2
2.

The corresponding dynamic system is
dx1

dt
= −6x1(x

2
1 − 1)(x2

1 − 3),

dx2

dt
= −2x2.

From the definition ofE(x), we can see that it has the following 5 stationary
points,(0,0)T , (±√3,0)T , (±1,0). Among these stationary points, three of them,
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Table 1. Simulation results of Problem 1

Initial point tf ∇E(x) E(x) Limit point

(1,1)T 0.0107 5.87e-07 2.43e-15 (1.73205, 0)

(−1,−1)T 0.0079 5.51e-07 9.48e-15 (−3.04e-08, 3.43e-08)

(2,2)T 0.0076 6.11e-07 9.35e-14 (1.73205, 0)

(−2,−2)T 0.0076 6.11e-07 9.35e-14 (-1.73205, 0)

Figure 3. The evolution ofx(t) in Problem 1 withx0 = (1,1).

(0,0)T , and (±√3,0)T are local optimal solutions. For initial points of(1,1)T

and(−1,−1)T , Step 1 of the refined neural network drives the trajectories of the
system to points(1,0)T and(−1,0)T , respectively, which are stationary points but
not local optimal solutions of the optimization problem. While Step 2 continues
the simulation until the system reaches local optimal solutions (see Figures 3 and
4). For the other two initial points of(2,2)T and(−2,−2)T , the trajectories of the
system converge to local optimal solutions directly. These simulation results are
summarized in Table 1. While the trajectories ofx(t) for the four different starting
points are illustrated in Figures 3–6.

PROBLEM 2.

min E(x) = (x2
1 − x2

2 + 1)2.

The corresponding dynamic system is
dx1

dt
= −4x1(x

2
1 − x2

2 + 1),

dx2

dt
= 4x2(x

2
1 − x2

2 + 1).
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Figure 4. The evolution ofx(t) in Problem 1 withx0 = (−1,−1).

Figure 5. The evolution ofx(t) in Problem 1 withx0 = (2,2).

Obviously in Problem 2, the stationary points are(0,0)T and(x1, x2)
T satisfying

x2
1 − x2

2 = −1. Local optimal solutions for Problem 2 are(x∗1, x
∗
2)
T satisfying

(x∗1)
2 − (x∗2)2 = −1. For initial points of(0.1,0)T and(−0.1,0)T , Step 1 of the

refined neural network drives the trajectories of the system to point(0,0)T which
is a stationary point but not a local optimal solution. While Step 2 continues the
simulation until the trajectories reach local optimal solutions (see Figures 7 and 8).
For the other initial point of(1,−1)T , the trajectory of the system converges to a
local optimal solution directly. These simulation results are summarized in Table
2. The trajectories ofx(t) for the three different starting points are illustrated in
Figures 7–9. In Problem 1, the equilibrium points are all isolated. While in Problem
2 the equilibrium set is connected and unbounded. The simulation results of both
problems confirm the results of Theorem 8.



378 QIAOMING HAN ET AL.

Figure 6. The evolution ofx(t) in Problem 1 withx0 = (−2,−2).

Table 2. Simulation results of Problem 2

Initial point tf ∇E(x) E(x) Limit point

(0.1,0)T 0.0306 6.73e-08 2.83e-16 (0, 1)

(−0.1,0)T 0.0306 6.73e-08 2.83e-16 (0, 1)

(1,−1)T 0.0183 6.45e-08 1.16e-16 (0.786212,−1.27206)

Figure 7. The evolution ofx(t) in Problem 2 withx0 = (0.1,0).



STABILITY ANALYSIS OF GRADIENT-BASED NEURAL NETWORKS 379

Figure 8. The evolution ofx(t) in Problem 2 withx0 = (−0.1,0).

Figure 9. The evolution ofx(t) in Problem 2 withx0 = (1,−1).

5. Concluding Remarks

Our research in this paper focuses on the gradient-based neural network (2) for
the optimization problem (1), which is the most commonly used neural network
model for optimization problems. First, we extend some definitions of isolated
equilibrium points and the associated stabilities to the case of any connected equi-
librium set which could be unbounded. With these more general definitions, we
have obtained the following results:

• First, a new approach is introduced to analyze stability properties of various
neural network models. The new approach does not require the existence of



380 QIAOMING HAN ET AL.

any Lyapunov function. The use of our new approach in stability analysis is
illustrated in Section 2.

• For gradient-based neural networks (2), ifE(x) is bounded below and its
gradientg(x) is Lipschitz continuous, then any trajectoryx(t) of the system
(2) will converge to an equilibrium point of the neural network (2).

• The Lyapunov stability is equivalent to the asymptotically stability in gradient-
based neural networks for optimization problems.

• For convex optimization problems, the equilibrium set is connected and asymp-
totically stable, and that any trajectory of gradient-based neural networks
will converge to an asymptotically stable equilibrium point if the objective
function is bounded below and has Lipschitz continuous gradient. Our results
require weaker assumptions than the Lyapunov’s direct method where the
equilibrium point must be isolated or the invariant set method where level
sets of the objective function must be bounded. In fact, our assumptions are
necessary, because the bounded below assumption onE(x) ensures that the
optimization problem (1) is meanful and Lipschitz continuity ofg(x) guar-
antees the existence and uniqueness of the solution of the neural network
(2).

• For the general nonlinear objective function, a refined gradient-based neural
network model is established, whose trajectory with any arbitrary initial point
will converge to an equilibrium point, which satisfies the second order neces-
sary optimality conditions for optimization problems.

We believe that similar conclusions would hold for projective gradient based
neural networks for optimization problems.

References

1. Bouzerdoum, A. and Pattison, T.R. (1993), Neural network for quadratic optimization with
bound constraints,IEEE Trans. Neural Networks4: 293–304.

2. Chen Y.H. and Fang, S.C. (1998), Solving convex programming problem with equality
constraints by neural networks,Computers Math. Appli.36: 41–68.

3. Chua L.O. and Lin, G.N. (1984), Nonlinear programming without computation,IEEE Trans.
Circuits Syst.31: 182–188.

4. Cichocki, A. and Unbehauen, R. (1992), Neural networks for computing eigenvalues and
eigenvectors,Biological Cybernetics68: 155–164.

5. Cichocki, A. and Unbehauen, R. (1993),Neural Networks for Optimization and Signal
Processing.Wiley, Chichester, U.K.

6. Coddington E.A. and Levinson, N. (1955),Theory of Ordinary Differential Equations,
McGraw-Hill, New York.

7. Goldstein, A.A. (1964), Convex programming in Hilbert space,Bulletin of American Mathem-
atical Society70: 709–710.

8. He, B.S. (1992), A projection and contraction method for a class of linear complement-
ary problem and its application in convex quadratic programming,Applied Mathematics and
Optimization25: 247–262.



STABILITY ANALYSIS OF GRADIENT-BASED NEURAL NETWORKS 381

9. He, B.S. (1994), A new method for a class of linear variational inequalities,Mathematical
Programming66: 137–144.

10. He, B.S. (1994), Solving a class of linear projection equations,Numerische Mathematik68:
71–80.

11. He, B.S. (1997), A class of projection and contraction methods for monotone variational
inequalities,Applied Mathematics and Optimization35: 69–76.

12. Hopfield, J.J. (1984), Neurons with graded response have collective computational ability, in
Proc. Natl. Acad. Sci., USA 81, pp. 3088–3092.

13. Hopfield, J.J. and Tank, D.W. (1985), Neural computation of decisions in optimization
problems,Biol. Cybern.52: 141–152.

14. Hou, Z.-G., Wu, C.-P. and Bao, P. (1998), A neural network for hierarchical optimization of
nonlinear large-scale systems,International Journal of Systems Science29(2): 159–166.

15. Kennedy M.P. and Chua, L.O. (1988), Neural networks for nonlinear programming,IEEE
Trans. Circuits Syst.35: 554–562.

16. Liao L.-Z. and Dai, Y. (1999), A time delay neural network model for unconstrained nonconvex
optimization, (manuscript).

17. Liao L.-Z. and Qi, H. (1999), A neural network for the linear complementarity problem,Math.
Comput. Modelling29(3): 9–18.

18. Liao, L.-Z., Qi, H. and Qi, L. Solving nonlinear complementarity problems with neural
networks: A reformulation method approach, (to appear inJCAM).

19. Liang, X.B. and Wang, J. (1999), A recurrent neural network for optimizing a continuously
differentiable function with bound constraints, (manuscript).

20. Lillo, W.E., Loh, M.H., Hui, S. and Zak, S.H. (1993), On solving constrained optimization
problems with neural networks: A penalty method approach,IEEE Trans. Neural Networks4:
931–940.

21. Maa, C.Y. and Shanblatt, M.A. (1992), Linear and quadratic programming neural network
analysis,IEEE Trans. Neural Networks3: 580–594.

22. Maa, C.Y. and Shanblatt, M.A. (1992), A two-phase optimization neural network,IEEE Trans.
Neural Networks3: 1003–1009.

23. Polyak, B.T. (1966), Constrained minimization problems,USSR Computational Mathematics
and Mathematical Physics6: 1–50.

24. Rodríguez-Vázquez, A., Domínguez-Castro, R., Rueda, A., Huertas, J.L. and Sánchez-
Sinencio, E. (1990), Nonlinear switch-capacitor ’neural’ networks for optimization problems,
IEEE Trans. Circuits Syst.37: 384–398.

25. Sánchez, D.A. (1968),Ordinary Differential Equations and Stability Theory: An Introduction.
W.H. Freeman and Company, San Francisco.

26. Slotine, J.J.E. and Li, W. (1991),Applied Nonlinear Control.Prentice Hall, Englewood Cliffs.
27. Sudharsanan, S. and Sundareshan, M. (1991), Exponential stability and a systematic synthesis

of a neural network for quadratic minimization,Neural Networks4: 599–613.
28. Tank, D.W. and Hopfield, J.J. (1986), Simple neural optimization networks: An A/D convert,

signal decision circuit, and a linear programming circuit,IEEE Trans. Circuits Syst.33: 533–
541.

29. Williems, J.L. (1970),Stability Theory of Dynamical Systems, Nelson.
30. Wu, X., Xia, Y., Li, J. and Chen, W.K. (1996), A high performance neural network for solving

linear and quadratic programming problems,IEEE Trans. Neural Networks7: 643–651.
31. Xia, Y. and Wang, J. (1998), A general methodology for designing globally convergent

optimization neural networks,IEEE Trans. Neural Networks9: 1331–1343.
32. Zabczyk, J. (1992),Mathematical Control Theory: An Introduction, Birkhauser, Boston.
33. Zak, S.H., Upatising, V. and Hui, S. (1995), Solving linear programming problems with neural

networks: a comparative study,IEEE Trans. Neural Networks6: 94–104.
34. Zhang, S. and Constantinides, A.G. (1992), Lagrange programming neural network,IEEE

Trans. Circuits Syst.39: 441–452.


